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LETTER TO THE EDITOR 

Kinetics of interface growth with next-nearest-neighbour 
interactions 

Pierre Devillard 
HLRZ, c/o KFA Julich, Postfach 1913, D-5170 Jiilich 1, Federal Republic of Germany 

Received 23 July 1990 

Abstract. We study interface growth for SOS models with next-nearest-neighbour interac- 
tions and especially the relaxation to equilibrium via evaporation and deposition dynamics 
when the initial state is an ideally flat surface and the equilibrium state is a disordered flat 
phase. The width of the interface first increases logarithmically with time before decreasing 
towards its finite equilibrium value and the behaviour of the order parameter measuring 
the long-range up-down order of the steps is compatible with Lifshitz theory. When a 
finite driving force is applied, it is found that the disordered flat phase becomes rough, 
even for temperatures well below the equilibrium roughening temperature between rough 
and disordered flat phases. 

There has been recent interest in understanding how the classical roughening of surfaces 
[ 13 is modified in non-equilibrium situations, for example, when a finite driving force 
is applied. Studies have used linear response [2], or have focused on simple solid-on- 
solid ( S O S )  models where some preference for growth over evaporation was imposed 
[3,4]. Some work has also been done on the Kardar-Parisi-Zhang (KPZ) equation [5] 
in three dimensions, and modifications of it to try to include a periodic potential [4]. 
When next-nearest-neighbour ( N N N )  interactions between atoms are present, it has 
been shown [6] that a new type of phase can appear; disordered flat phases (DOF). 
Equilibrium phase diagrams and static properties of SOS models with N N N  interactions 
have been studied in [6]. It is the purpose of this letter to examine the influence of 
N N N  interactions on some problems already studied in the context of the dynamics of 
normal SOS models. In particular, DOF phases are intriguing because there is no 
nucleation barrier and the surface is still flat. We will focus on the relaxation to 
equilibrium when one starts from a flat surface and the equilibrium phase is a DOF 
phase. The analogous problem for normal sos-type models at infinite temperature was 
studied in [7]. We shall also discuss the influence of a finite driving force. (See [2] for 
the case where NNN interactions are absent.) 

We first want to study the case of zero driving force. Let us consider the following 
Hamiltonian [ 6 ] :  

H = J  6(lhi-hjI--l)+J’ 1 6(lhi-hjI-l)+K 6( lh i -h j l -2 ) .  
N N  N N N  N N N  

hi is an integer representing the height of site i, where the sites i lie on the square 
lattice. The first sum runs over all pairs ( i , j )  where j is a nearest-neighbour site of i 
and the last two sums are on all pairs of next-nearest-neighbour sites ( i ,  j ) .  The difference 
hi - hj between nearest neighbours can only take the values - 1 ,  1, or 0 (the model is 
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a restricted solid-on-solid (RSOS) model). From now on, we restrict ourselves to the 
case J = J‘  = 0 and K /  k T  > In 2. For such a case, the equilibrium state is a DOF phase 
[ 6 ] .  We want to understand how, starting from a flat phase, the system relaxes to 
equilibrium toward a DOF phase, using evaporation and deposition dynamics. This 
study is in the same spirit as former studies [7] on the same problem but without N N N  

interactions. It is known that, at infinite temperatures, the surface evolves according 
to the Edwards-Wilkinson theory [8]. 

We now describe our method of simulation. We use ( 4 n + 2 ) x 4 n  lattices with 
helical boundary conditions in the horizontal direction and periodic boundary condi- 
tions in the vertical direction. By convention, we set L = 4 n + l .  In order to get 
vectorization, four sublattices were used and all sites of each sublattice were updated 
simultaneously. We reached 2.6 MC steps per microsecond for systems of size L = 17 
and up to 3.18 MC steps per microsecond for L =  181, on cone Cray YMP processor. 
The height on each site has a probability 4 of increasing and f of decreasing by one 
unit. If the final configuration still maintains the restricted SOS condition, the move is 
accepted with probability exp(-AElkT) where AE is the change in energy between 
the new and the old configuration. If the move leads to height differences between 
nearest neighbours larger than 1, it is rejected in any case and the old configuration 
remains. 

The width w of the interface is defined as usual as 

w = ( ( h r - ( h r ) ) 2 ) 1 ’ 2  

where the brackets mean the average on the sites r of the lattice. Another quantity of 
interest is the terrace order parameter 

(+) (exPiirhr)(hr - h:) )  (2) 

where r ’ =  (x - 1, y )  is the left neighbour of site r = (x, y ) .  x and y are respectively the 
abscissa and ordinate of site r. (+) is non-zero only in the DOF and body-centred SOS 

(BCSOS) flat phases [6]. In order to distinguish between DOF and BCSOS flat phases, 
we also looked at the staggered magnetization 

p = (exp(ir(x + y + h r ) ) ) .  (3) 

In the thermodynamic limit, p is non-zero only in the BCSOS flat phase. In the range 
of parameters where we were working, the steady state value of p went to zero as 1/ L2. 
This ensured that we were not dealing with BCSOS flat phases. 

Figure 1 shows w 2 ,  the square of the width, plotted against In t, where t is the 
number of Monte Carlo (MC) attempts per lattice site, for samples of sizes L =  17 to 
L =  121. We work at K / k T  =+, so that T is well below the roughening transition 
K /  kT = In 2 between a rough phase and a DOF phase. One can see that w first increases 
and then decreases. After a time t , (L ) ,  it saturates to a constant value W, which we 
refer to as the saturation width. 

We then want to study (4). Actually we calculate the quantity 

9= (4) 

where the outer straight brackets mean the average over different samples, (the inner 
brackets mean the average over the different sites of a particular sample). Because of 
the indetermination on the sign of ($), averaging (4) over many samples would 
eventually give zero. Figure 2 shows In 9 against In t for the same samples. One sees 
that Y first behaves as a power law and then, after a time t* (L)  saturates to its 
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Figure 1. Squared width w 2  against In f where t is the number of Monte Carlo steps per 
site, at zero driving force, for K / k T = y ! -  1.429, for lattices of size L= 17 to L= 121 as 
explained in text. Symbols are: for L = 17 (A), L = 25 (m), L = 33 ( x ), L = 61 (It) and 
L=121 (+). Averages have been taken over 20 samples for L =  121, and up to 10000 
samples for L = 17. 
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Figure 2. Time dependence of the order parameter Y. In Y against In t for the same samples 
as in figure 1. 

equilibrium value. It is seen by comparing figure 1 and figure 2 that t , ( L )  and t* (L)  
coincide approximately. We would like to show that 

t* (L)  - L' ( 5 )  
where z is some exponent. Figure 3 shows In t* (L)  against In L. A least-squares fit 
gives z=2.07*0.13. 

Our interpretation of the simulation results is as follows. Starting from a flat 
interface, in the regime of parameters we are in, it is very easy to create steps, so that 
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Figure 3. Finite-size scaling of the crossover time f * .  In t * ( L )  against In L for the same 
samples as in figure I .  The full line is a least-squares fit to the data and has a slope 2.07. 

after a few Monte Carlo steps per spin, there is a finite density of steps. The order 
parameter ($} is still low. Then the system begins to order in  domains where CL is 1 
or -1.  According to Lifshitz theory [9], the typical size of domains, l, grows as V"?. 
When I becomes of order L, one domain with a certain sign will win and one comes 
into equilibrium. ?%us, we should have t , (  L )  -I t"( L )  - L2. When (I)) is not too far 
from its equilibrium value, so that there are few domains, one can very roughly say 
that, as the number of domains decreases, the number of successions of parallel steps 
decreases and therefore the roughness decreases. For early times ( t  larger than a few 
MC steps but much smaller than L'), ($1 is still small. In figure 1, one sees that in this 
regime (at least for L = 61 and L = 121), one has 

w 2 -  K In t. (6) 

This behaviour is reminiscent of roughening for the hyperstacking model [6.7], and 
for the usual iisos model at infinite temperature. (The usual RSOS model is just the 
same as the model we are considering in this letter but without the N N N  interactions.) 
At infinite temperature, the form of the Hamiltonian is not important, only the fact 
that nearest-neighbour heights are not allowed to differ by more than one unit count. 
The model we have considered so far reduces to the usual RSOS model at infinite 
temperature. We also simulated the usual RSOS model at infinite temperature and 
obtained for times t<< L2 a behaviour of the type (6) but with a larger value of K than 
for the RSOS model with N N N  interactions at finite temperature. What may happen is 
that the potential between N N N  renormalizes K but the long range order of terraces 
(controlled by (I))) is still not strong enough to diminish the roughness. 

We now examine the influence of a finite driving force. It is introduced via a term 

where Ap is a chemical potential difference. If we start from an equilibrium configur- 
ation, and switch on Ap, the velocity of the interface should be for infinitesimal A p  
proportional to Ap, since even for exp K /  kT > 2, the step free energy is zero. After a 
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few MC steps, this should also hold for our case. We carried out simulations with small 
system size ( L  = 2 5 )  and varied Ap.  

For small Ap, ( A p /  kT = 4 and $), with K /  kT = y ,  we observed that w2 against In 1 
ceases to have a maximum. The width then saturates to a value W which increases 
with A p  and simultaneously, the steady state value of 9 decreases. 

For moderate Ap, ( A p / k T  equal to $-%, we have w2-ln t for short times and 
then w saturates at a constant value. It is however probable that, strictly speaking, as 
soon as A p  is non-zero, the behaviour of the width is in fact governed by the strong 
coupling fixed point of the KPZ equation so that, for sufficiently large systems [7,10], 
w behaves as a power law of time for short times before going to saturation for large 
times. However, the asymptotic regime may be attained only for huge systems if A p  
is sufficiently small. 

For large Ap,  (Ap/ kT = 2 for exampe), we have w 2  - t P  with p around 0.39, just 
as in the RSOS model of Kim and Kosterlitz [lo]. When A p / k T  is much larger than 
K / k T ,  the system forgets about the Hamiltonian (equation (1)). Numerous numerical 
studies of such types of models are in the literature [ 111. We want to focus on the case 
of small Ap.  Figure 4 shows the saturation width w2 against In L for A p  = 0 and 
A p / k T = f ,  with K / k T = y .  For A p  =0,  one sees that the curve W 2  against In L 
becomes flat for large L. This confirms the fact that the equilibrium phase is a flat 
phase [ 121. For A p /  kT = $, in contrast, the curve W 2  against In L straightens up for 
large L, indicating a rough interface. 

0 . 5  
?V 

i 

t i t  
* + +  
t 

0.25 + 
2 3 4 5 6 

l n  L 
Figure4. Size dependence of the saturation width W W 2  against In L for K /  kT =lo= 1.429, 
A p = O  ( + )  and Aw/kT=f=0.142 (m). 

In normal SOS models, a mechanism for obtaining a rough surface below the 
equilibrium roughening temperature TR by applying a driving force has been proposed 
in [ 2 ] .  The basic idea is that the finite velocity U of the interface introduces some new 
length L*, L* is proportional to v - ' a / v  where a is the lattice constant, and v has the 
dimension of a surface relaxation coefficient. When L* gets below the correlation 
length 6 for the height-height correlation function, the surface becomes rough. Our 
numerical data are for T<< TR. Since the step-free energy in the DOF phase is zero, v 
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is proportional to A p / k T  (for small A p l k T ) .  L* decreases as k T / A p  and easily 
becomes smaller than 6, even with Tcc TR, (whereas in the case of a roughening 
transition between a rough and an ordered flat phase, U falls very quickly below TR) .  
Our data prove that the value of A p /  kT necessary to roughen a DOF phase is small 
with respect to KIkT,  even for temperatures much below TR. More detailed studies 
(involving the measurement of 6 and v) would be needed to see if this mechanism 
also applies to our case. 

Our results can be summarized as follows. We have performed numerical simulations 
of SOS models with N N N  interactions and focused on the case where the equilibrium 
phase is a disordered flat phase. We find that, starting from a flat interface and letting 
it evolve via evaporation deposition dynamics, the squared width first increases 
logarithmically with time and then decreases. This non-monotonic behaviour can be 
understood within the Lifshitz theory, because the sign of the terrace order parameter 
($) is not determined. We checked that the measured time necessary for both the width 
and the terrace order parameter to come to their equilibrium values are compatible 
with an L2 dependence ( L  being the size of the system). When a finite driving force 
is applied, even for A p /  kT = $ and T /  TR = 0.7 In 2, we observe that the interface in 
the steady state regime has become rough. 

We wish to thank D Wolf and D Stauffer for very helpful discussions as well as for a 
critical reading of the manuscript. 
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